Downscaling of global climate models for flood frequency analysis: where are we now?
نویسندگان
چکیده
The issues of downscaling the results from global climate models (GCMs) to a scale relevant for hydrological impact studies are examined. GCM outputs, typically at a spatial resolution of around 3° latitude and 4° longitude, are currently not considered reliable at time scales shorter than 1 month. Continuous rainfall-runoff modelling for flood regime assessment requires input at the daily or even hourly time-step. A review of the different methodologies suggested in the literature to downscale GCM results at smaller spatial and temporal resolutions is presented. The methods, from simple interpolation to more sophisticated dynamical modelling, through multiple regression and weather generators, are, however, mostly based directly on GCM outputs, sometimes at daily time-step. The approach adopted is a simple, empirical methodology based on modelled monthly changes from the HadCM2 greenhouse gases experiment for the time horizon 2050s. Three daily rainfall scenarios are derived from the same set of monthly changes, representing different possible changes in the rainfall regime. The first scenario represents an increase of the occurrence of frontal systems, corresponding to a decrease in the rainfall intensity; the second corresponds to an increase in convective storm-type rainfall, characterized by extreme events with higher intensity; the third one assumes an increase in the monthly rainfall without any change in rainfall variability. A continuous daily rainfall-runoff model, calibrated for the Severn catchment, was used to generate daily flow series for the 1961–90 baseline period and the 2050s, and a peaks-over-threshold analysis was undertaken to produce flood frequency distributions for the two time horizons. Though the three scenarios lead to an increase in the magnitude and the frequency of the extreme flood events, the impact is strongly influenced by the type of daily rainfall scenario applied. We conclude that if the next generation of GCMs produce more reliable rainfall variance estimates, then more appropriate ways of deriving rainfall scenarios could be developed using weather generators rather than empirical methods. Copyright 2002 John Wiley & Sons, Ltd.
منابع مشابه
Iran's Future Climate Conditions and Hazard in Climate Research
Global temperatures have increased in the past 100 years by an average of 0.74°C (IPCC, 2013), with minimum temperatures increasing faster than maximum temperatures and winter temperatures increasing faster than summer temperatures (IPCC, 2013). Total annual rainfall tends to increase at the higher latitudes and near the equator, while rainfall in the sub-tropics is likely to decline and become...
متن کاملA framework for global river flood risk assessments
There is an increasing need for strategic global assessments of flood risks in current and future conditions. In this paper, we propose a framework for global flood risk assessment for river floods, which can be applied in current conditions, as well as in future conditions due to climate and socio-economic changes. The framework’s goal is to establish flood hazard and impact estimates at a hig...
متن کاملتاثیر تغییر اقلیم بر شدت و دوره بازگشت خشکسالی های ایران
Due to the growth of industries and factories, deforestation and other environmental degradation as well as greenhouse gases have been increasing on the Earth's surface in recent decades. This increase disturbs the climate of the Earth and is called climate change. An Increase in greenhouse gases in the future could exacerbate the climate change phenomenon and have several negative consequences...
متن کاملPrediction of Climate Change in Western of Iran using Downscaling of HadCM3 Model under Different Scenarios
Abstract Considering that water resources are at risk from climate change, the study of temperature and precipitation changes in the coming years can lead to droughts such as droughts, sudden floods, high evaporation and environmental degradation. To this end, global climate models (GCMs) are designed to assess climate change. The outputs of these models have low spatial accuracy. In order ...
متن کاملGlobal warming increases the frequency of river floods in Europe
EURO-CORDEX (Coordinated Downscaling Experiment over Europe), a new generation of downscaled climate projections, has become available for climate change impact studies in Europe. New opportunities arise in the investigation of potential effects of a warmer world on meteorological and hydrological extremes at regional scales. In this work, an ensemble of EURO-CORDEX RCP8.5 scenarios is used to ...
متن کامل